Dravet Syndrome Foundation

Research Summary

NICOLE VILLAS, M.ED

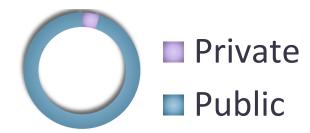
BOARD PRESIDENT/SCIENTIFIC DIRECTOR, DSF

ICARE MEETING 2019

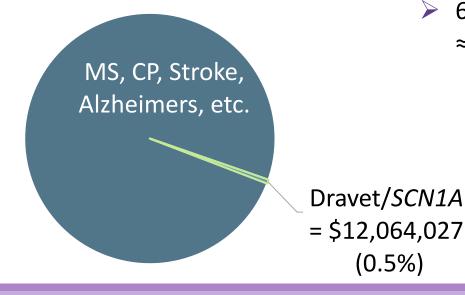
Objectives

DSF as a funding source

- What is our role?
- What is our strategy?


DSF-Funded research

- Program design
- Funding breakdown
- Current/Exciting research
- Where do we go from here?



What is our role?

ICARE 2014 portfolio analysis: \$150 Million spent in 2013 95% Public (NIH etc.) <5% Private (DSF Incl.)

2019 NINDS Budget \$2,216,913,000

➤ 6.75% of US residents have a neurological disorder, $\approx 0.09\%$ of those are Drayet

Utilizing 0.5% of the NINDS budget

BUT IT IS NOT ENOUGH

(0.5%)

What is our role?

Goals

Roles

Improved treatments

Minimize/eliminate comorbidities

Better quality of life

Cure (?)

Bring treatments to market (\$650 million)

Improve understanding of mechanisms of Dravet, comorbidities

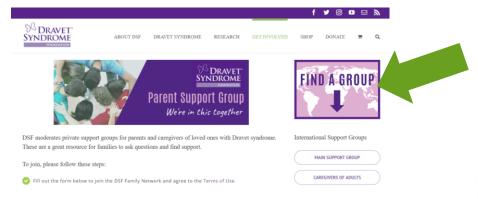
Arm researchers & clinicians with preliminary data or support needed to pursue further study

Prepare community for research

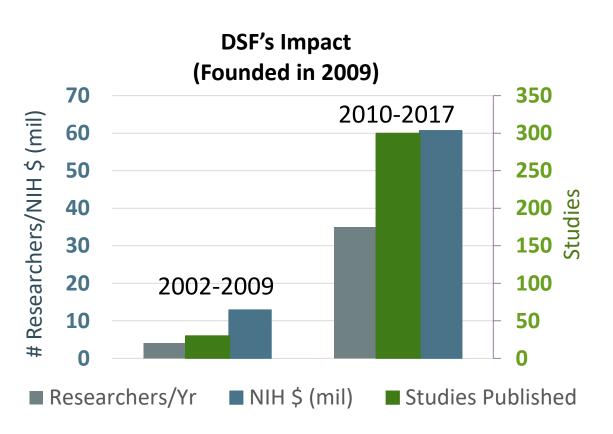
What is our strategy?

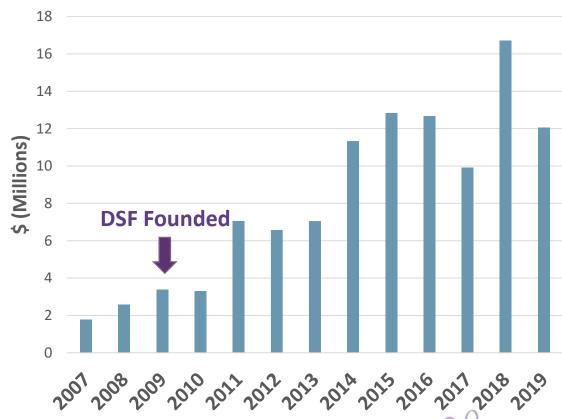
DSF Mission: "To aggressively raise research funds for Dravet syndrome, to... increase awareness, and to... provide support to families." Strategic Plan = 3 objectives: Cure, Treat, Learn


DSF's Strategy:


1) Increase the # of researchers studying Dravet

2) Support research that leads to larger (NIH) awards

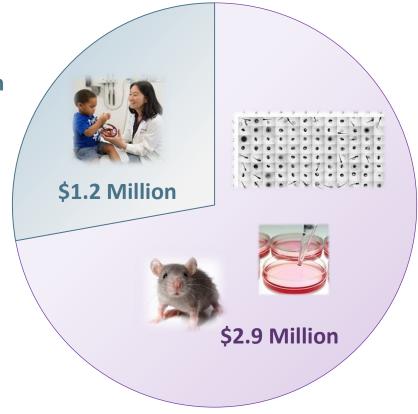

3) Increase knowledge of disease/mechanisms/clinical care



What is our strategy?

NIH Spending on Dravet/SCN1A

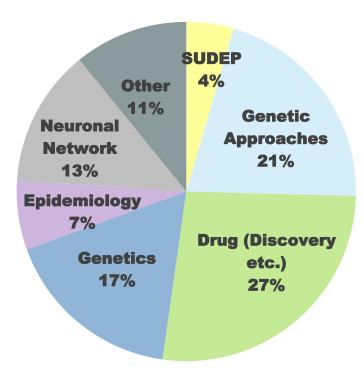
Program Design

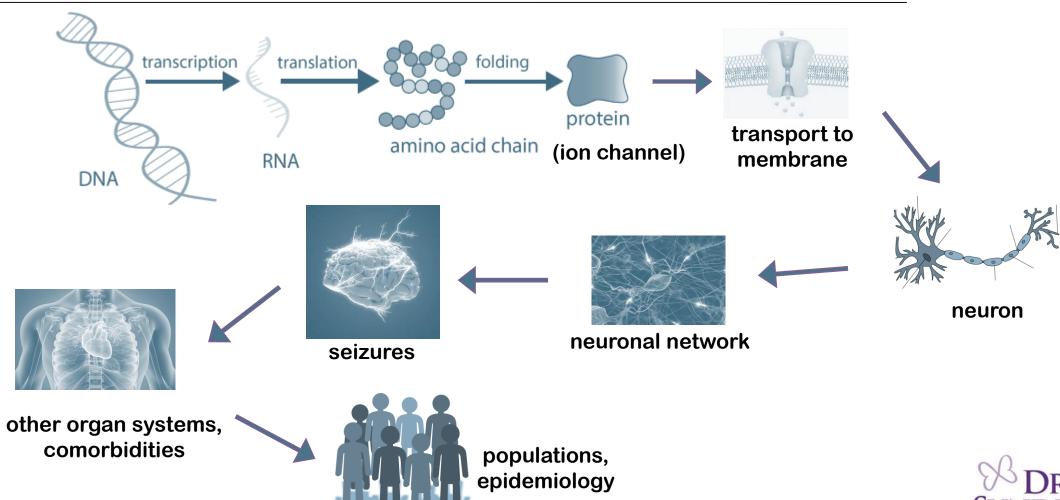

DSF has awarded \$4.1 million to research since 2009:

	Research Awards	Postdoctoral Fellowships	Clinician- Researcher Awards	Special RFA	Other
Award:					
Length:					
Projects Funded:					
Total \$\$ Awarded					
Publications From Research:					

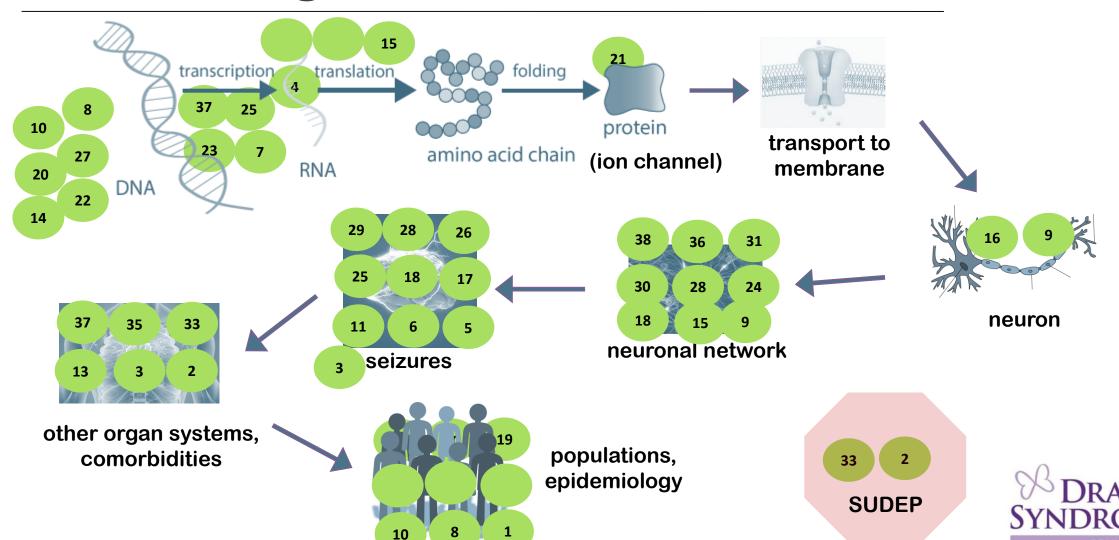
For grant information, visit: www.dravetfoundation.org/dsf-funded-research/research-grant-program/

29% Clinical Research


71% Basic Science Research (mice, iPSC, zebrafish)


38 Projects

\$1,113,000
\$714,000
\$868,000
\$545,000
\$187,500
\$273,000
\$450,000
\$4,150,500


DSF Funded Research

https://ayearofai.com/rohan-lenny-1-ne, http://biosocialmethods.isr.umich.edu/epigenetics-tutorial/epigenetics-tutorial-gene-expression-from-dna-to-protein/, https://www.csblab.or.kr/lonChannel, By Quasar Jarosz at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7616130, ural-networks-the-backpropagation-algorithm-explained-abf4609d4f9d, *Getty*,

DSF-Funded Research Highlights

- > Zebrafish are a good model for efficient drug discovery (3 drugs in development as a result) and mechanistic studies (Baraban et al. 2013; Grone et al. 2016)
- Dravet is nearly 2x more prevalent than previously thought (Wu 2015)
- Postictal EEG suppression could be a factor in SUDEP (Kim et al. 2015)
- Expert consensus on diagnosis and treatment incl. 1st and 2nd line agents (Wirrell et al. 2017)
- ➤ Regulatory elements may play a key role in *Scn1a* expression and may account for the 10-15% of *SCN1A*-negative patients (Nord, AES poster 2016)

Current DSF-Funded Research

2017 Awards (Currently in Year 2):

Daniel Mulkey, PhD – University of Connecticut \$150,000 – Research Grant (2 year project) Disordered breathing contributes to SUDEP in a mouse model of Dravet syndrome

David R. Hampson, PhD — University of Toronto \$143,000 — Research Grant (2 year project) Exploring gene therapy to treat sudden unexpected death and other pathological features of Dravet syndrome

Current DSF-Funded Research

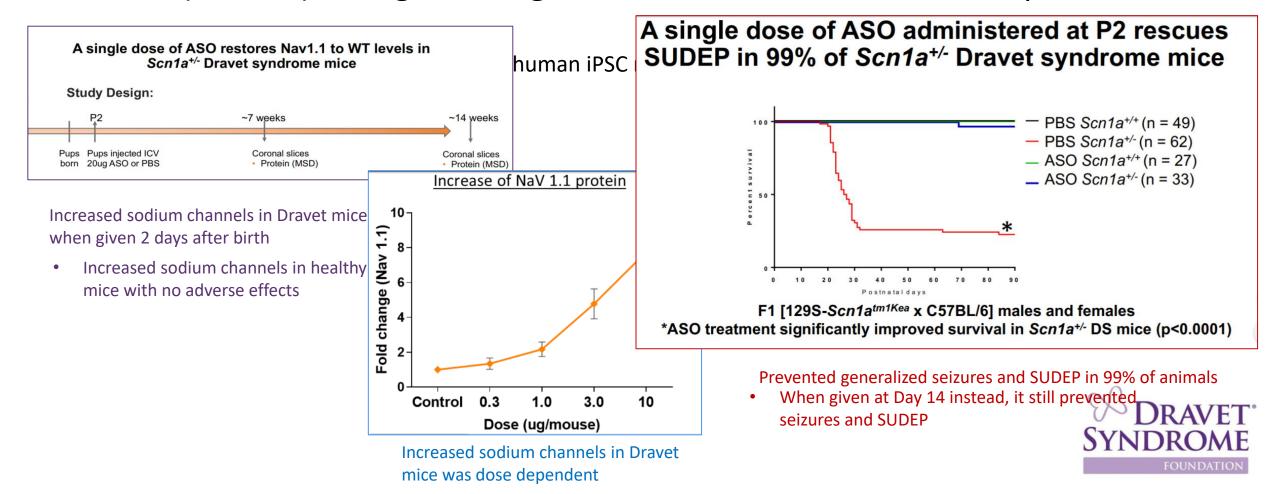
2018 Awards (Currently in Year 1):

Gemma Carvill, PhD – Northwestern University, \$165,000 (2 year project)
Pathogenic splicing mechanisms of an SCN1A poison exon in Dravet syndrome

John M Schreiber, MD – Children's National / Children's Research Institute, \$150,000 (2 year project)
Subclinical myocardial damage in Dravet syndrome, other refractory convulsive epilepsy, and convulsive status epilepticus

Sharon Swanger, PhD – Virginia Polytech Institute and State University, \$150,000 (2 year project) Balancing thalamic excitation and inhibition in a Dravet syndrome mouse model

Rajeswari Banerji, PhD – University of Colorado Denver, \$50,000 - 1\$ year postdoctoral fellowship Identifying a novel metabolic target for improving disease outcomes in Dravet syndrome


Jessica Chancey, PhD – University of Texas at Austin, \$50,000 - 1\$ year postdoctoral fellowship Mechanisms of altered neuronal excitability and synaptic integration in a mouse model of Dravet syndrome

Other Exciting Research

Genetic Approaches	Oakley, Wagnon	Creating a mouse model that can be turned off and on at different stages of life to determine how fixing the SCN1A problem affects development and seizures
	Hampson, Waddington, Karda, Rubinstein, others	Taking steps toward gene therapy – studying possible delivery vectors
	Mallamaci	RNA-based transcription/translation stimulation of healthy SCN1A
	Stoke Therapeutics	Using ASO to increase the efficiency of mRNA processing in SCN1A's favor
	DSF Grant Recipient(s)	Genetic Approaches spring RFA recipient(s) to be announced in mid May 2019
SUDEP Mechanisms	Goldman, Richerson, Mulkey, others	Investigating the cardiorespiratory failure in SUDEP and its relation to SCN1A, studying patient data in depth to elicit cause and effect
Cellular Models	Parent, Isom, Kiskinis, Dang, others	Creating iPSC models that can more quickly identify therapeutic approaches
Other	Industry	Preclinical work going on in several exciting areas

Other Exciting Research (Stoke)

Stoke (TANGO) – Targeted Augmentation of Nuclear Gene Output

Where do we go from here?

1. Understanding is not complete:

- ✓ Collaborations between experts in research fields is required
- ✓ Address the root cause of the problem
- ✓ Determine effects on other organ systems
 -How to measure those effects

Where do we go from here?

2. Moving from understanding to action requires patient participation:

- ✓ Support natural history studies
- ✓ Define, measure, analyze outcomes/endpoints beyond seizures
- Prepare patient community for research

 Input on different trial designs, understanding of each design's limitations
 - -Address caregiver burn-out in trials

Where do we go from here?

3. Moving from understanding to action requires more clinicians:

- ✓ Experts tapped out. Encourage clinician-researchers
- Expand network of experts
- ✓ Engage adult neurologists in studies, from characterization to clinical trials

CATCH-22: CLINICAL TRIAL EDITION

References

Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. *Nat Commun*. 2013;4:2410. doi:10.1038/ncomms3410

Grone BP, Qu T, Baraban SC. Behavioral Comorbidities and Drug Treatments in a Zebrafish *scn1lab* Model of Dravet Syndrome. *eNeuro*. 2017;4(4):ENEURO.0066-17.2017. Published 2017 Aug 14. doi:10.1523/ENEURO.0066-17.2017

Wu YW, Sullivan J, McDaniel SS, et al. Incidence of Dravet Syndrome in a US Population. *Pediatrics*. 2015;136(5):e1310–e1315. doi:10.1542/peds.2015-1807

Kim, S. H., Nordli, D. R., Berg, A. T., Koh, S., & Laux, L. (2015). Ictal ontogeny in Dravet syndrome. Clinical Neurophysiology, 126(3), 446–455. doi:10.1016/j.clinph.2014.06.024

Wirrell EC, Laux L, Donner E, Jette N, Knupp K, Meskis MA, Miller I, Sullivan J, Welborn M, Berg AT. Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel. Pediatr Neurol. 2017 Mar;68:18-34.e3. doi: 10.1016/j.pediatrneurol.2017.01.025.

Nord, Alex, poster presentation at 2016 AES: www.aesnet.org/meetings_events/annual_meeting_abstracts/view/198665

Thank you!

Email: Nicole@dravetfoundation.org