PRE Clinical Interagency reSearch resourcE-TBI

Common Data Elements (CDEs): What? Why? How?

Michelle LaPlaca, Neil Harris

VA GREATER LOS ANGELES HEALTHCARE SYSTEM

Healthcare Network

U.S. Department of Veterans Affairs

Veterans Health Administration Office of Research and Development

DISCOVERY \star INNOVATION ★ ADVANCEMENT

CDEs are concepts related to units of data expressed as content standards, variables, or terms that enable investigators to systematically collect, analyze, and share data across the research community

adapted from Chou et al. 2022 Neurotrauma Reports

discovery \star innovation \star advancement VA |

U.S. Department of Veterans Affairs

Veterans Health Administration Office of Research and Development

CDEs for a study are assembled into a data dictionary

CDE Leve	Variable Name	Title	Description
Core	AgeVal	Age of the animal at the time of procedure	Age of the animal at the time of procedure in minutes, hours, days, weeks, months, or years.

cont'd	Datatype	Maximum character quantity	Input restriction	Minimum value	Maximum value	Permissible values	Unit of measure
	Numeric	1000	Free-Form Entry	0	1000		minutes; hours; days; weeks; months; years

	Guidelines/instructions	Notes	Keywords	CDE origination
cont'd	Specify the age of the subject. Indicate in your			
	final study data dictionary which unit of measure			NIH/CIT/BRICS
	is used in the dataset.			

WHY do we need CDEs?

Poor reproducibility Variable names not consistent Difficult mapping & sharing Data not reported evenly

PRECISE CDEs v1.0 (23 CDEs) used to map variable names in 11 datasets from ODC-TBI.

- Best mapping: Species, Breed (no distinction between breed or strain), GeneModtxt, AgeVal, Sex
- Age not provided for each timepoint; reported at the time of injury
- Units not homogeneous across datasets or in a single dataset *

U.S. Department of Veterans Affairs

WHY do we need CDEs?

CARE in the 21st Century

Poor reproducibility Difficult mapping & sharing

Veterans Health Administration Office of Research and Development

DISCOVERY INNOVATION

ADVANCEMENT

U.S. Department of Veterans Affairs

eterans Health Administration Office of Research and Development

- Facilitate mandatory data management and sharing policies
- Improve data management and quality: rigor & transparency

WHY should I use CDEs?

- Facilitate data sharing among labs & studies: reproducibility
- Enable data pooling to increase statistical power & compare data across labs

STEPS for PRECISE-TBI

- 1. Form working groups of stakeholders and experts to develop / refine CDEs
- 2. Identify variables that are in common use by the research community
- 3. Create data dictionary templates and CDE priorities
- 4. Release to research community for input; enable consensus; update and iterate
- 5. Endorse for publication and use

STEPS for the Investigator

- 1. Use existing CDE Data Dictionaries to create study-specific data dictionary
- 2. Create new CDEs as needed for your study
- Existing data: map your variables to existing / new CDEs 3.
- 4. Prospective studies: design data collection instruments to match studyspecific data dictionary

e.g., TOP-NT

PRINCIPLES

- CDEs are intended to be dynamic and can evolve over time
- PRECISE-TBI will establish a minimal CORE set of CDEs
 - ➤ CORE
 - > RECOMMENDED
 - > SUPPLEMENTAL
- PRECISE-TBI is agnostic to the study
- Each study should have a study-specific data dictionary
- Data sharing does not currently require CDEs
- Informatics tools will make process easier in the future

WHERE do I find CDEs?

7

8

9

10 11

12

13

14 15

16

17

18

19

20

21

22

INNOVATION ★ ADVANCEMENT

	1	Category	CDE Level	Variable Name	Title
l	2	Equipment	Core	BMTEquipPlatformDiametVal	Barnes Maze test - Equipment Pla
	3	Equipment	Supplemental	BMTEquipPlatformHeightVal	Barnes Maze test - Equipment Pla
	4	Equipment	Core	BMTEquipPlatformHoleDiametVal	Barnes Maze test - Equipment pla
	5	Equipment	Core	BMTEquipPlatformHoleNumberVal	Barnes Maze test - Equipment pla
	6	Equipment	Recommended	BMTEquipPlatformIlluminVal	Barnes Maze test - Equipment illu
	7	Equipment	Supplemental	BMTVisualCueNum	Barnes Maze test - Visual cues n
	8	Equipment	Supplemental	BMTVisualCueDistance	Barnes Maze test - Distance of the
	9	Equipment	Supplemental	BMTVisualCueSize	Barnes Maze test - Size of the vis
	10	Equipment	Supplemental	BMTAversiveStimulusDur	Barnes Maze test - Aversive stimu
	11	Equipment	Supplemental	BMTAversiveStimulusTyp	Barnes Maze test - Aversive stimu
	12	Equipment	Supplemental	BMTOdorCue	Barnes Maze test - Odor Cue
	13	Equipment	Supplemental	BMTPretestAcclTimeDur	Barnes maze test - pretest acclim
	14	Equipment	Recommended	BMTAcquisitionMethod	Barnes Maze test - Acquisition Me
	15	Equipment	Supplemental	BMTTrackingMethod	Barnes Maze test - Tracking Meth
	16	Procedural Parameter	Recommended	BMTStartingLocation	Barnes Maze test - Starting location
	17	Procedural Parameter	Core	BMTTrialType	Barnes Maze test - Trial Type
	18	Procedural Parameter	Core	BMTTrialNum	Barnes Maze test - Trial order for (
	19	Procedural Parameter	Recommended	BMTIntervalBetweenAcquisitionTrials	Barnes Maze test - Interval betwee
	20	Procedural Parameter	Core	BMTAcquisitionNumberofDays	Barnes Maze test - Number of acc
	21	Procedural Parameter	Core	BMTAcquisitiontoProbeInterval	Barnes Maze test - Interval betwee
	22	Data Collected	Recommended	BMTAnimalSpeed	Barnes Maze test - Average Spee
	23	Data Collected	Recommended	BMTDistanceTraveled	Barnes Maze test - Distance Trave
	24	Data Collected	Recommended	BMTTargetBoxErrorsPrimaryCt	Barnes Maze test - Error counts ti
	25	Data Collected	Recommended	BMTTargetBoxErrorsTotalCt	Barnes Maze test - Errors to find a
	26	Data Collected	Core	BMTLatencyEscapeHolFindDur	Barnes Maze test - Latency to find
	27	Data Collected	Supplemental	BMTLatencyEscapeHolEnterDur	Barnes Maze test - Latency to ent

DISCOVERY ★

Defining

CARE in the 21st Century

HEALTH

EXCELLENCE

mination lev mber e visual cue ual cue lus duration lus used typ atization to ethod od to detect on each dav en acquisitio uisition day: en last acqui d of the anim eled Il first encour and enter the d escape hole er escape ho

А	В	C
CDE Level	Variable Name	Title
Meta	StudyTitleName	Study Title
Meta	StudyPIName	Study PI/MPI Name
Meta	StudyInstitutionName	Study Institution name(s)
Meta	StudyFundingSource	Study Funding agency name
Meta	StudyInterventTyp	Type(s) of intervention conducted
Meta	StudySurvivalTime	Survival elapsed time relative to injury
Meta	StudyInjModelTyp	Traumatic Brain Injury (TBI) model type(s)
Meta	StudyInjRepetitionInd	Injury repetition indicator
Meta	StudySpeciesTyp	Study animal species type(s)
Meta	StudySexTyp	Study sex type(s)
Meta	StudyOutcomeMeasureType	Type(s) of outcome measures in the study
Meta	StudyOutcomeMeasureTime	Outcome measure time(s) relative to injury
Meta	StudyGroupSizeRange	Range of number of subjects in experimental groups
Core	GUID	GUID
Core	SpeciesTyp	Animal species type
Core	SmallSpeciesStrainTyp	Small animals - strain type
Core	GeneModTxt	Animal genetic modifications text
Core	SexTyp	Sex type
Core	AgeVal	Age of the animal at the time of procedure
Core	InjuryGroupAssignTyp	Injury group assignment type
Core	InterventTyp	Type of intervention conducted

HOW do I use CDEs?

Study-specific CDEs are added to the datasheet

e.g., injury parameters, behavioral outcomes

GUID	Species Typ	SmallSpecies StrainTyp	GeneMod Txt	Sex Typ	Age Val	InjuryGroup AssignTyp	Intervent Typ
BS_1001	rat	Sprague Dawley	wild type	male	3	sham	vehicle
BS_1002	rat	Sprague Dawley	wild type	female	3	sham	vehicle
BS_1003	rat	Sprague Dawley	wild type	male	3	sham	vehicle
BS_1004	rat	Sprague Dawley	wild type	female	3	sham	vehicle
BS_1005	rat	Sprague Dawley	wild type	male	3	sham	vehicle
BS_1006	rat	Sprague Dawley	wild type	female	3	sham	vehicle
BS_1007	rat	Sprague Dawley	wild type	male	3	ТВІ	Drug A
	rat	Sprague Dawley	wild type	female	3	ТВІ	Drug A
	rat	Sprague Dawley	wild type	male	3	ТВІ	Drug A
	rat	Sprague Dawley	wild type	female	3	ТВІ	Drug A
	rat	Sprague Dawley	wild type	male	3	ТВІ	Drug A
_ BS 1012	rat	Sprague Dawley	wild type	female	3	ТВІ	Drug A
_		,	51				0

BS_1012 BS_1012 BS_1012

BS_1012

Each time point or trial for the same animal is indicated on a separate row

U.S. Department of Veterans Affairs

Veterans Health Administration Office of Research and Development

Next Steps for CDE Development

Continue to survey existing CDEs

- NIH/CIT/BRICS (FITBIR Preclinical)
- TOP-NT
- Epilepsy \rightarrow PTE
- Widen CDE development to include histopathology, fluid biomarkers, injury models, and imaging as well as priority domains from the community and literature

Consider end-to-end use of CDEs

- Data collection tools
- Informatics submission tools e.g., ODC-TBI
- Understand data sharing requirements and compatibility with CDE tools
- Comply with National Library of Medicine governance to endorse PRECISE-TBI CDEs for research community use

PRECISE-TBI COMMON DATA ELEMENTS

CDE Committee: *PRECISE-TBI

Corina Bondi, Univ Pitt

Fiona Crawford, Roskamp Institute

*Ed Dixon, Univ Pitt

Scott Ferguson, Roskamp Institute

*Jeffrey Grethe, UCSD

*Gene Gurkoff, UC Davis, VA Northern CA Health System

*Neil Harris, UCLA, LA VAMC

*Russell Huie, UCSF, San Francisco VA Health Care System

*Catherine Johnson, Missouri S&T, Truman Memorial Veteran Hospital

*Michelle LaPlaca, Georgia Tech, Emory, Atlanta VAMC

Jonny Lifshitz, Univ Arizona

Bruce Lyeth, UC Davis

Deborah Shear, WRAIR

*Monique Surles-Zeigler, UCSD, San Francisco VA Health Care System

*Abel Torres Espin, UCSF, San Francisco VA Health Care System

*Pam VandeVord, Virginia Tech, Salem VAMC

Cheryl Wellington, UBC

Awwad, Hibah (NIH/NINDS) (at-large) Coleen Atkins, Miami Tiffany Greco, UCLA Annie Hoffman, UCLA Asla Pitkänen, Univ East Finland

Financial Support: VA ORD 150BX005878

VA

