Leigh's Disease Information Page

Leigh's Disease Information Page


Search Disorders

What research is being done?

The NINDS supports and encourages a broad range of basic and clinical research on neurogenetic disorders such as Leigh's disease. The goal of this research is to understand what causes these disorders and then to apply these findings to new ways to diagnose, treat, and prevent them.

Information from the National Library of Medicine’s MedlinePlus
Degenerative Nerve Diseases

×
What research is being done?

The NINDS supports and encourages a broad range of basic and clinical research on neurogenetic disorders such as Leigh's disease. The goal of this research is to understand what causes these disorders and then to apply these findings to new ways to diagnose, treat, and prevent them.

Information from the National Library of Medicine’s MedlinePlus
Degenerative Nerve Diseases

The NINDS supports and encourages a broad range of basic and clinical research on neurogenetic disorders such as Leigh's disease. The goal of this research is to understand what causes these disorders and then to apply these findings to new ways to diagnose, treat, and prevent them.

Information from the National Library of Medicine’s MedlinePlus
Degenerative Nerve Diseases


Definition
Definition
Treatment
Treatment
Prognosis
Prognosis
Clinical Trials
Clinical Trials
Organizations
Organizations
Publications
Publications
Definition
Definition

Leigh's disease is a rare inherited neurometabolic disorder that affects the central nervous system. This progressive disorder begins in infants between the ages of three months and two years. Rarely, it occurs in teenagers and adults. Leigh's disease can be caused by mutations in mitochondrial DNA or by deficiencies of an enzyme called pyruvate dehydrogenase. Symptoms of Leigh's disease usually progress rapidly. The earliest signs may be poor sucking ability,and the loss of head control and motor skills.These symptoms may be accompanied by loss of appetite, vomiting, irritability, continuous crying, and seizures. As the disorder progresses, symptoms may also include generalized weakness, lack of muscle tone, and episodes of lactic acidosis, which can lead to impairment of respiratory and kidney function.
 

In Leigh’s disease, genetic mutations in mitochondrial DNA interfere with the energy sources that run cells in an area of the brain that plays a role in motor movements. The primary function of mitochondria is to convert the energy in glucose and fatty acids into a substance called adenosine triphosphate ( ATP). The energy in ATP drives virtually all of a cell's metabolic functions. Genetic mutations in mitochondrial DNA, therefore, result in a chronic lack of energy in these cells, which in turn affects the central nervous system and causes progressive degeneration of motor functions.

There is also a form of Leigh’s disease (called X-linked Leigh's disease) which is the result of mutations in a gene that produces another group of substances that are important for cell metabolism. This gene is only found on the X chromosome. 

×
Definition

Leigh's disease is a rare inherited neurometabolic disorder that affects the central nervous system. This progressive disorder begins in infants between the ages of three months and two years. Rarely, it occurs in teenagers and adults. Leigh's disease can be caused by mutations in mitochondrial DNA or by deficiencies of an enzyme called pyruvate dehydrogenase. Symptoms of Leigh's disease usually progress rapidly. The earliest signs may be poor sucking ability,and the loss of head control and motor skills.These symptoms may be accompanied by loss of appetite, vomiting, irritability, continuous crying, and seizures. As the disorder progresses, symptoms may also include generalized weakness, lack of muscle tone, and episodes of lactic acidosis, which can lead to impairment of respiratory and kidney function.
 

In Leigh’s disease, genetic mutations in mitochondrial DNA interfere with the energy sources that run cells in an area of the brain that plays a role in motor movements. The primary function of mitochondria is to convert the energy in glucose and fatty acids into a substance called adenosine triphosphate ( ATP). The energy in ATP drives virtually all of a cell's metabolic functions. Genetic mutations in mitochondrial DNA, therefore, result in a chronic lack of energy in these cells, which in turn affects the central nervous system and causes progressive degeneration of motor functions.

There is also a form of Leigh’s disease (called X-linked Leigh's disease) which is the result of mutations in a gene that produces another group of substances that are important for cell metabolism. This gene is only found on the X chromosome. 

Treatment
Treatment

The most common treatment for Leigh's disease is thiamine or Vitamin B1. Oral sodium bicarbonate or sodium citrate may also be prescribed to manage lactic acidosis. Researchers are currently testing dichloroacetate to establish its effectiveness in treating  lactic acidosis. In individuals who have the X-linked form of Leigh’s disease, a high-fat, low-carbohydrate diet may be recommended.

×
Treatment

The most common treatment for Leigh's disease is thiamine or Vitamin B1. Oral sodium bicarbonate or sodium citrate may also be prescribed to manage lactic acidosis. Researchers are currently testing dichloroacetate to establish its effectiveness in treating  lactic acidosis. In individuals who have the X-linked form of Leigh’s disease, a high-fat, low-carbohydrate diet may be recommended.

Definition
Definition

Leigh's disease is a rare inherited neurometabolic disorder that affects the central nervous system. This progressive disorder begins in infants between the ages of three months and two years. Rarely, it occurs in teenagers and adults. Leigh's disease can be caused by mutations in mitochondrial DNA or by deficiencies of an enzyme called pyruvate dehydrogenase. Symptoms of Leigh's disease usually progress rapidly. The earliest signs may be poor sucking ability,and the loss of head control and motor skills.These symptoms may be accompanied by loss of appetite, vomiting, irritability, continuous crying, and seizures. As the disorder progresses, symptoms may also include generalized weakness, lack of muscle tone, and episodes of lactic acidosis, which can lead to impairment of respiratory and kidney function.
 

In Leigh’s disease, genetic mutations in mitochondrial DNA interfere with the energy sources that run cells in an area of the brain that plays a role in motor movements. The primary function of mitochondria is to convert the energy in glucose and fatty acids into a substance called adenosine triphosphate ( ATP). The energy in ATP drives virtually all of a cell's metabolic functions. Genetic mutations in mitochondrial DNA, therefore, result in a chronic lack of energy in these cells, which in turn affects the central nervous system and causes progressive degeneration of motor functions.

There is also a form of Leigh’s disease (called X-linked Leigh's disease) which is the result of mutations in a gene that produces another group of substances that are important for cell metabolism. This gene is only found on the X chromosome. 

Treatment
Treatment

The most common treatment for Leigh's disease is thiamine or Vitamin B1. Oral sodium bicarbonate or sodium citrate may also be prescribed to manage lactic acidosis. Researchers are currently testing dichloroacetate to establish its effectiveness in treating  lactic acidosis. In individuals who have the X-linked form of Leigh’s disease, a high-fat, low-carbohydrate diet may be recommended.

Prognosis
Prognosis

The prognosis for individuals with Leigh's disease is poor. Individuals who lack mitochondrial complex IV activity and those with pyruvate dehydrogenase deficiency tend to have the worst prognosis and die within a few years. Those with partial deficiencies have a better prognosis, and may live to be 6 or 7 years of age. Some have survived to their mid-teenage years.

×

The prognosis for individuals with Leigh's disease is poor. Individuals who lack mitochondrial complex IV activity and those with pyruvate dehydrogenase deficiency tend to have the worst prognosis and die within a few years. Those with partial deficiencies have a better prognosis, and may live to be 6 or 7 years of age. Some have survived to their mid-teenage years.

Prognosis
Prognosis

The prognosis for individuals with Leigh's disease is poor. Individuals who lack mitochondrial complex IV activity and those with pyruvate dehydrogenase deficiency tend to have the worst prognosis and die within a few years. Those with partial deficiencies have a better prognosis, and may live to be 6 or 7 years of age. Some have survived to their mid-teenage years.

Definition

Leigh's disease is a rare inherited neurometabolic disorder that affects the central nervous system. This progressive disorder begins in infants between the ages of three months and two years. Rarely, it occurs in teenagers and adults. Leigh's disease can be caused by mutations in mitochondrial DNA or by deficiencies of an enzyme called pyruvate dehydrogenase. Symptoms of Leigh's disease usually progress rapidly. The earliest signs may be poor sucking ability,and the loss of head control and motor skills.These symptoms may be accompanied by loss of appetite, vomiting, irritability, continuous crying, and seizures. As the disorder progresses, symptoms may also include generalized weakness, lack of muscle tone, and episodes of lactic acidosis, which can lead to impairment of respiratory and kidney function.
 

In Leigh’s disease, genetic mutations in mitochondrial DNA interfere with the energy sources that run cells in an area of the brain that plays a role in motor movements. The primary function of mitochondria is to convert the energy in glucose and fatty acids into a substance called adenosine triphosphate ( ATP). The energy in ATP drives virtually all of a cell's metabolic functions. Genetic mutations in mitochondrial DNA, therefore, result in a chronic lack of energy in these cells, which in turn affects the central nervous system and causes progressive degeneration of motor functions.

There is also a form of Leigh’s disease (called X-linked Leigh's disease) which is the result of mutations in a gene that produces another group of substances that are important for cell metabolism. This gene is only found on the X chromosome. 

Treatment

The most common treatment for Leigh's disease is thiamine or Vitamin B1. Oral sodium bicarbonate or sodium citrate may also be prescribed to manage lactic acidosis. Researchers are currently testing dichloroacetate to establish its effectiveness in treating  lactic acidosis. In individuals who have the X-linked form of Leigh’s disease, a high-fat, low-carbohydrate diet may be recommended.

Prognosis

The prognosis for individuals with Leigh's disease is poor. Individuals who lack mitochondrial complex IV activity and those with pyruvate dehydrogenase deficiency tend to have the worst prognosis and die within a few years. Those with partial deficiencies have a better prognosis, and may live to be 6 or 7 years of age. Some have survived to their mid-teenage years.

What research is being done?

The NINDS supports and encourages a broad range of basic and clinical research on neurogenetic disorders such as Leigh's disease. The goal of this research is to understand what causes these disorders and then to apply these findings to new ways to diagnose, treat, and prevent them.

Information from the National Library of Medicine’s MedlinePlus
Degenerative Nerve Diseases

Patient Organizations
Epilepsy Foundation
8301 Professional Place East, Suite 200
Landover
MD
Landover, MD 20785-7223
Tel: 301-459-3700; 800-EFA-1000 (332-1000)
MitoAction
P.O. Box 51474
Boston
MA
Boston, MA 02205
Tel: 888-648-6228
National Organization for Rare Disorders (NORD)
55 Kenosia Avenue
Danbury
CT
Danbury, CT 06810
Tel: 203-744-0100; Voice Mail: 800-999-NORD (6673)
United Mitochondrial Disease Foundation
8085 Saltsburg Road
Suite 201
Pittsburgh
PA
Pittsburgh, PA 15239
Tel: 412-793-8077; 888-317-UMDF (8633)