Review Date	Last Name	First Name	Institution	Title	Cohort	Abstract
2021	McCarthy	Michael	University of California – San Diego/VA San Diego Healthcare Research Service	Cellular Circadian Rhythm Disruption in ME/CFS	CFI	We hypothesize that TGF- β signaling is upregulated in ME/CFS and remains persistently elevated leading to a series of pathological events including circadian rhythm disruption that contributes to sleep disruption and cognitive complaints in a subset of ME/CFS patients. We anticipate that serum from ME/CFS patients with significant sleep disruption will be sufficient to cause circadian disruption in cultured fibroblasts and neurons. Our laboratory has substantial experience performing cellular circadian rhythm assays and has extensively used the NIH 3T3 cell model with <i>Per2-luc</i> transfection. In this aim, the effects on rhythms of serum from ME/CFS patients and control will be studied using <i>Per2-luc</i> in fibroblasts to determine if there are disease-specific factors (such as TGF- β) that affect cellular rhythm assays using live cells. In multi-day cellular rhythm assays using live cells, we will identify and characterize ME/CFS-associated abnormalities, identify the serum factors responsible, and assess the role of TGF- β using gene expression knockdown, recombinant cytokines, and pharmacological interventions to recapitulate or block the effects of serum.
2022	Robbiani	Davide	Università della Svizzera italiana (Switzerland)	Autoantibodies against chemokines in CFS/ME	CFI	The primary aim of this pilot study is to measure the level of plasma autoantibodies against the 43 human chemokines in CFS/ME patients. This will be compared to matched cohort controls, and to convalescent individuals after COVID-19 (with or without long- COVID) and other infections. Moreover, as a secondary aim, we will test the hypothesis that common cold coronaviruses may be involved in CFS/ME pathogenesis by measuring the same samples for the presence of antibodies to the spike protein of human common cold coronaviruses (229E, OC43, NL63, HKU1) and SARS- CoV-2 (note: since the requested samples are pre- pandemic, SARS-CoV-2 reactivity will serve as negative/background control). Since the presence of specific anti-chemokine antibodies is associated with protection from long-COVID, in addition to having

						diagnostic utility, the study of these autoantibodies in CFS/ME has the potential to pave the way to novel therapeutic approaches.
2023	Robbiani	Davide	Università della Svizzera italiana (Switzerland)	Autoantibodies against chemokines in CFS/ME	CFI	The primary aim of this pilot study is to measure the level of plasma autoantibodies against the 43 human chemokines in CFS/ME patients. This will be compared to matched cohort controls, and to convalescent individuals after COVID-19 (with or without long- COVID) and other infections. Moreover, as a secondary aim, we will test the hypothesis that common cold coronaviruses may be involved in CFS/ME pathogenesis by measuring the same samples for the presence of antibodies to the spike protein of human common cold coronaviruses (229E, OC43, NL63, HKU1) and SARS- CoV-2 (note: since the requested samples are pre- pandemic, SARS-CoV-2 reactivity will serve as negative/background control). Since the presence of specific anti-chemokine antibodies is associated with protection from long-COVID, in addition to having diagnostic utility, the study of these autoantibodies in CFS/ME has the potential to pave the way to novel therapeutic approaches.