Skip secondary menu

Neural Circuits Unit - Division of Intramural Research


Lewis, A., et al
Celsr3 Is Required for Normal Development of GABA Circuits in the Inner Retina, PLoS Genet, 2011, vol. 7(8), pp. e1002239.


Connaughton VP, and Nelson R.
Spectral Responses in Zebrafish Horizontal Cells Include a Tetraphasic Response and a Novel UV-Dominated Triphasic Response, J. Neurophysiol, 2010, vol. 104(5), pp. 2407-22.


Nelson RF, and Singla N
A spectral model for signal elements isolated from zebrafish photopic electroretinogram, Vis Neurosci, 2009, vol. 26, pp. 349-363.


Nelson R, Bender AM, and Connaughton VP
Transporter-mediated GABA responses in horizontal and bipolar cells of zebrafish retina, Vis. Neurosci, 2008, vol. 25, pp. 155-165.

Connaughton VP, Nelson R, and Bender AM
Electrophysiological evidence of GABAA and GABAC receptors on zebrafish retinal bipolar cells, Vis Neurosci, 2008, vol. 25, pp. 139-153.


Connaughton, V. P., Graham D., and Nelson R
Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina, J. Comp. Neurol, 2004, vol. 477, pp. 371-385.


Nelson, R. Bender, A. M. and Connaughton, V. P.
Stimulation of sodium pump restores membrane potential to neurons excited by glutamate in zebrafish distal retina, J. Physiol, 2003, vol. 549, pp. 787-800.


Nelson, R., Janis A. T., Behar T. N. and Connaughton V. P.
Physiological Responses Associated with Kainate Receptor Immunoreactivity in Dissociated Zebrafish Retinal Neurons: a Voltage Probe Study. In H. Kolb and S. Wu editors:, Progress in Brain Research, 2001, vol. 131, pp. 255-265.

Kolb, H., Nelson, R., Ahnelt, P. and Cuenca, N.
Cellular organization of the vertebrate retina. In H. Kolb and S. Wu editors:, Progress in Brain Research, 2001, vol. 131, pp. 3-26.


Kolb, H., Fernandez, E., Nelson, R.
WEBVISION The organization of the vertebrate retina., N/A, 2000 Full Text/Abstract


Nelson, R., Schaffner, A. E., Li, Y.-X and Walton M. K.
Distribution of GABAC-like response patterns among acutely disociated rat retinal neurons., Visual Neuroscience, 1999, vol. 16, pp. 179-190.


Kolb, H. and Nelson, R.
Hyperpolarizing, small-field, amacrine cells in cone pathways of cat retina., Journal of Comparative Neurology, 1996, vol. 371, pp. 415-436.

Freed, M. A., Pflug, R., Kolb, H., Nelson, R.
ON-OFF amacrine cells in cat retina., Journal of Comparative Neurology, 1996, vol. 364, pp. 556-566.


Freed, M. A. and Nelson, R.
Conductances evoked by light in the On-beta ganglion cell of cat retina, Visual Neuroscience, 1994, vol. 11, pp. 261-269.


Nelson, R. and Kolb, H.
A17: A broad-field amacrine cell in the rod system of the cat retina., Journal of Neurophysiology, 1985, vol. 54, pp. 592-614.


Nelson, R. and Kolb, H.
Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina., Vision Research, 1983, vol. 21, pp. 1183-1195.


Nelson, R
AII amacrine cells quicken timecourse of rod signals in cat retina., Journal of Neurophysiology, 1982, vol. 47, pp. 928-947.


Kolb, H., Nelson, R. and Mariani, A. P.
Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study., Vision Research, 1981, vol. 21, pp. 1081-1114.


Nelson, R., Famiglietti, E. V. Jr., and Kolb H.
Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in the cat retina., J. Neurophysiol., 1978, vol. 41, pp. 472-483.


Nelson, R.
Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat., Journal of Comparative Neurology, 1977, vol. 172, pp. 109-136.

Back to Lab Page