Epilepsy
| Epilepsy Research Benchmarks |
|---|
| Highlights |
|---|
| Judith Hoyer Lecture on Epilepsy |
| Resource Links |
|---|
| Anticonvulsant Screening Program (ASP) NIH RePORTER is an electronic tool that allows users to search a repository of NIH-funded research projects and access publications and patents resulting from NIH funding. |
| Contacts |
|---|
| Brandy Fureman, Ph.D. Program Director, Channels Synapses & Circuits Cluster furemanb@mail.nih.gov Deborah Hirtz, M.D. Randall Stewart, Ph.D. Vicky Whittemore, Ph.D. |
|
Epilepsy Benchmark IIIB Benchmark Area III. Create and implement new therapies free of side effects that are aimed at the cessation of seizures in patients with epilepsy. B. Specific Benchmark: Develop a genetic fingerprint diagnostic test to: 1) identify patients who are likely to respond to a specific therapy; 2) identify patients likely to become refractory to therapy; 3) identify risk factors for abnormal metabolism or potential adverse effects for specific AEDs in individual patients. |
2005 Report submitted by Benchmark Steward(s):
Tracy Glauser, M.D. (Cincinnati Children’s Hospital)
Background of the benchmark goal:
Response to anticonvulsant therapy demonstrates marked inter-individual variation both in drug efficacy and adverse effects.
A significant portion of this inter-individual variation is under genetic control. Recent advances in genetic technology
and analysis have permitted investigations into the relationship between the response to anticonvulsant therapy and polymorphisms
in drug metabolizing enzymes, drug transporters, and drug receptors.
Current status of the field:
Significant fundamental research is still needed to elucidate the clinically significant associations that will form the basis
for developing a genetic fingerprint diagnostic test for anticonvulsant efficacy, treatment resistance or adverse events.
Currently, the two main methodologies used in this research are 1) association studies between response to therapy (efficacy,
adverse effects) and single nucleotide polymorphisms (SNPs) of drug metabolizing enzymes, drug transporters, and drug receptors
and 2) gene expression studies using microarrays. Previously, association studies focused on known common SNPs but since SNP
databases are being found to be often incomplete, SNP discovery is becoming more popular. In general, SNPs in drug metabolizing
enzymes alter anticonvulsant pharmacokinetics potentially leading to unexpectedly high levels with subsequent adverse effects.
Similarly, SNPs in genes coding for drug efflux transporters alter the anticonvulsant drug’s ability to remain inside target
cells resulting in reduced efficacy and subsequent treatment resistance. Lastly, SNPs in genes coding for the receptor drug
binding site are potential causes for reduced receptor binding and subsequent decreased drug action. A newer approach has
been to examine the relationship between response to therapy and changes in gene expression following exposure to medication.
Activities update:
Published reports: During the past year, there have been four human pharmacogenetic association studies and one human gene
expression study. Two studies (both published in Neurology September 2004) examined the proposed relationship between a polymorphism
in the drug efflux transporter gene ABCB1 and treatment resistant epilepsy. The studies reached contradictory conclusions
about the potential association. In an editorial in the same issue, these conflicting studies were used to illustrate some
of the methodological problems evident in current epilepsy pharmacogenetic research. Another pharmacogenetic epilepsy study
utilized population pharmacokinetic modeling approaches to provide phenytoin dosing recommendation based on the patient’s
CYP2C9/CYP2C19 genotype. In a separate study, a Japanese team did not find a relationship between gingival overgrowth in phenytoin
patients and CYP2C polymorphisms. Lastly, a pilot trial reported distinct blood expression profiles for patients on carbamazepine
monotherapy compared to patients on valproic acid monotherapy. This study also described a characteristic blood expression
profile for seizure free patients taking valproic acid compared to patients with uncontrolled seizures.
Ongoing studies: NINDS has funded a 20 center 436 patient clinical trial that is focused, in part, on elucidating the genetic contribution to the interindividual variation in anticonvulsant efficacy and adverse events in children with childhood absence epilepsy. For example the relationship between anticonvulsant efficacy and polymorphisms in three different T-type calcium channel genes is being investigated. The Epilepsy Foundation is funding a study examining the relationship between polymorphisms in carbamazepine and valproic acid drug metabolizing enzymes and altered drug pharmacokinetics and adverse events (as judged by a validated side effects questionnaire).
A NINDS funded project is utilizing microarray technology to investigate different patterns of gene expression preliminarily associated with valproic acid and carbamazepine efficacy in children with epilepsy. No final results are yet available from this study but the pilot gene expression publication described above resulted from this NINDS funded research.
During the past year, there have been no workshops or symposiums focused solely on the pharmacogenetics of anticonvulsant efficacy or toxicity.
Top priorities for next 5-10 years:
Roadblocks to progress:
Last updated January 12, 2010