Skip secondary menu

Reflex Sympathetic Dystrophy/ Complex Regional Pain Syndromes (CRPS): State-of-the-Science


 
Table of Contents (click to jump to sections)

Reflex Sympathetic Dystrophy/ Complex Regional Pain Syndromes (CRPS): State-of-the-Science

December 15, 2001
Washington, DC

 

Meeting Summary

On December 15, 2001, the National Institute of Neurological Disorders and Stroke and the NIH Office of Rare Diseases convened a workshop on RSD/CRPS chaired by Dr. Jon Levine (UCSF) and Dr. Cheryl Kitt (NINDS). The participants included neurologists, neuroscientists, patient advocates and NINDS staff. The goal of the meeting was to bring together leading pain researchers to consider RSD/CRPS in the context of their own research paradigms, determine the state of the science and identify new directions for research on this disorder.

Top

 

Background

Reflex Sympathetic Dystrophy (RSD), also known as Complex Regional Pain Syndrome (CRPS) Type I (here called RSD/CRPS), is a chronic condition characterized by burning pain and abnormalities in the sensory, motor and autonomic nervous systems. The syndrome typically appears after an acute injury to a joint or limb, though it may occur with no obvious precipitating event. In most cases, regardless of the site of injury the symptoms begin and remain most intense in the distal most extremity. In the initial stages of RSD/CRPS, pain and swelling from the injury do not subside but actually intensify, spreading from the site of the injury to other parts of the limb, to the contralateral limb or to remote regions of the body. The skin in affected areas and particularly deep somatic tissues are painfully sensitive to touch, often red and abnormally warm due to alterations in regional blood flow. Changes in sweating patterns, hair growth, subcutaneous tissues, muscles, joints or bones and difficulty moving the joint or limb are other hallmarks of the disorder. In addition to the evidence of inflammation and abnormal autonomic nervous system function, there are changes in motor systems including tremor, weakness and dystonia, which strongly suggest a central nervous system component to the disease in a subgroup of patients. The syndrome may evolve through three stages (acute, dystrophic, atrophic), although this is very much debated, each marked by progressive pain and physical changes in the skin, muscles, joints and bones. RSD/CRPS can affect both genders and all ages (including children), although it is thought to be more common between the ages of 40 and 60 and may be more frequent in women. The cause of RSD/CRPS is unknown, and current treatments are not effective for many patients.

Top

 

Scientific Presentations

Experts from a wide variety of clinical and basic research areas, including neuro-imaging, pain, neural plasticity, the sympathetic nervous system and the immune system were invited to bring their knowledge and research approaches to bear on the difficult clinical problem of RSD/CRPS. The participants considered the current knowledge about RSD/CRPS in the context of the state-of-the-art research tools used in their laboratories and proposed ways to apply these approaches to RSD/CRPS. It is hoped that new opportunities for innovative research into the mechanism(s), epidemiology and treatment of RSD/CRPS will be fostered by their cross-disciplinary discussions.

During their presentations, the participants suggested that the mechanism(s) that cause RSD/CRPS are elusive, primarily because of the number of complex systems affected. It became obvious that a single mechanism can barely account for all of the changes seen in patients with RSD/CRPS. Several innovative hypotheses were presented at the workshop and it was agreed on the notion that several mechanisms interact to produce the symptoms of RSD/CRPS.

  • Drs. Ralf Baron and Wilfrid Jänig presented clear evidence of sympathetic nervous system dysfunction in their experimental studies of human patients with RSD/CRPS. Activating the sympathetic nervous system by lowering body temperature results in increased pain in the affected area in a subgroup of RSD/CRPS patients, whose pain is relieved by sympathetic nerve block or sympathectomy (destruction of the sympathetic innervation to the affected area). However, this sympathetically maintained pain (SMP) mainly involves the deep somatic tissues. While it is not known how autonomic dysfunction relates to the myriad tissue pathologies in RSD/CRPS, this evidence led the participants to generally agree on the following key issues: 1) RSD/CRPS is a neurological (rather than psychological) disorder, and 2) RSD/CRPS is likely to be a disorder of the central (in addition to the peripheral) nervous system.
  • Dr. Clifford Woolf provided evidence that some types of neuropathic pain are related to changes in pain signaling pathways, including in the neurons of the spinal cord. Such modifications could distort the signaling process so that normally painless stimuli begin to produce pain, and stimuli that should be slightly discomforting actually produce severe, long-lasting pain. New technologies in gene and protein expression profiling should permit researchers to explore these issues further. However, it must be kept in mind that RSD/CRPS in most patients is triggered by traumas without nerve lesions. Thus the pain in these RSD/CRPS patients is not neuropathic pain in the strict sense.
  • Dr. Linda Watkins suggested that the immune system might play a role in the disorder since signs of inflammation (redness, swelling, increased blood flow and tissue accumulation of immune cells) in the painful region are common in RSD/CRPS patients. The release of pro-inflammatory cytokines in response to neural and glial activation may be one connection between the abnormal regulation of the sympathetic nervous system and the characteristics of inflammatory immune reactions seen in the disorder. These thoughts connect to the idea that peripheral inflammatory processes are involved in the pathogenesis of early RSD/CRPS. However, the exact mechanisms of the initiation and maintenance of these inflammatory reactions, their connection to the sympathetic and afferent (peptidergic) innervation of the affected tissues and their relation to the central changes (e.g., the spinal cord, as addressed by Dr. Watkins) are far from clear. Dr. Levine, who presented several similarities between RSD/CRPS and autoimmune inflammatory diseases such as rheumatoid arthritis, provided support for this idea.
  • Dr. Wilfrid Jänig approached the problem from a systems level and proposed that the inappropriate integration of sensory, autonomic and motor components at several levels in the central nervous system could be a cause of RSD/CRPS. The initial insult mostly occurs in the periphery and triggers changes in the central representations of the sensory, motor and sympathetic systems which are reflected in the changes of the respective output systems observed in the RSD/CRPS patients. Subsequent interactions with the immune, endocrine and vascular systems could lead to changes in the long-term responsiveness of the central nervous system that finally determines the disease symptomatology in the chronic state.
  • Dr. Catherine Bushnell applied her expertise in neuroimaging to the question of nervous system activation in RSD/CRPS. She presented comparative imaging of pain in the brain after cutaneous or visceral stimuli to identify brain regions that are uniquely responsive to a particular type of painful stimulus. Similar comparisons between "normal" pain and pain in RSD/CRPS patients should help to clarify which regions of the nervous system are abnormally activated in this disease state. This is a very attractive and promising idea in view of the finding that many chronic RSD/CRPS patients have generalized sensory deficits (cold, warm, pain, touch perception) that can be quantified. If this is a CNS abnormality, functional imaging could suggest CNS sites that should be explored.
  • Dr. Stephen Bruehl presented clear evidence that psychological distress in patients with CRPS is not a causative factor but might evolve secondary to the chronic pain syndrome. Furthermore, statistical factor analysis of multiple signs and symptoms in CRPS shows that the diagnostic criteria that have been defined so far should be extended by particular signs (e.g. by motor symptoms) in order to increase diagnostic sensitivity and specificity.

In summary, based on evidence from clinical observations, experimentation on humans, and experimentation on animals the general hypothesis has been put forward that RSD/CRPS is a disease of the central nervous system. RSD/CRPS patients exhibit changes which occur in somatosensory systems processing noxious, tactile and thermal information, in sympathetic systems innervating blood vessels, sweat glands and possibly other targets, and in the somatomotor system, indicating that the central representations of these systems are changed. The way these central changes are triggered by the peripheral trauma, which is often minor compared to the dramatic expression of the clinical phenomena, remains an enigma. Furthermore, the way these central changes connect to the peripheral inflammatory/immune changes is entirely unclear. Finally, we cannot explain why pain and the other changes associated with the sympathetic nervous system (including swelling), the motor system and the somatosensory system may disappear, in RSD/CRPS patients with sympathetically maintained pain (SMP), after sympathetic blockade (e.g., with a local anesthetic or with guanethidine). It was agreed that, based on the clinical changes observed in the RSD/CRPS patients which can be measured quantitatively, it should be possible to formulate hypotheses about the underlying mechanisms. These hypotheses should be tested by using a multidisciplinary approach, which includes clinical experimentation and human models. Such an approach is imperative to reach to a mechanism-based diagnostic classification of the RSD/CRPS patients and ultimately to the development of a mechanism-based therapeutic strategy.

Top

 

New Research Directions

The workshop participants identified several critical needs in our basic understanding of RSD/CRPS, as well as potential directions for basic and clinical research on new treatment strategies. These needs were in the areas of 1) diagnostic criteria, 2) epidemiology, 3) RSD/CRPS model systems, 4) disease mechanisms, 5) integration between basic research and clinical research, and 6) therapy:

  1. A consensus definition of RSD/CRPS with standardized diagnostic criteria. There is practical agreement among neurologists, anesthesiologists and others about the minimal clinical criteria (signs and symptoms) that define RSD/CRPS. However, without a universally accepted definition and diagnostic criteria and a further validation and extension of the present clinical criteria, it is difficult to accurately identify RSD/CRPS patients, select patients for clinical trials, validate experimental human and animal model systems for research, and last-but-not-least to formulate testable hypotheses. The participants suggested that an expert meeting to specifically define the clinical and diagnostic criteria, based on what is known, should be a high priority for the field. Once determined, these consensus criteria should be disseminated to the medical, research and advocacy communities, in particular to those groups involved in the epidemiological studies, design of appropriate models for symptoms in RSD/CRPS, research on underlying mechanisms and the design of RSD/CRPS therapies tested in prospective clinical trials.
  2. Epidemiological studies of RSD/CRPS using well-defined diagnostic criteria. Epidemiological studies to identify characteristics of patients at high risk for developing RSD/CRPS, to better define the relationship between certain clinical signs and disease onset, progression and distribution on the body, and to find out the incidence of patients with RSD/CRPS were considered a high priority. Patients with RSD/CRPS exhibit different combinations of symptoms. Does the individual RSD/CRPS patient progress through the three stages of the disorder as described in the literature. Most patients do not seem to go through different stages, although this has not been thoroughly investigated. Currently the symptomatic variability among RSD/CRPS patients makes it difficult to draw firm conclusions about mechanisms of the disorder based on clinical profiles, and could contribute to unclear findings in clinical trials. Strict patient selection based on defined clinical criteria could help to resolve this problem. Epidemiological studies may also help to clarify the anecdotal evidence regarding different incidence rates between women and men and the differences in the disease state between children and adults with RSD/CRPS. Finally, epidemiological studies may serve to work out prospective studies in order to find predictors for the development of RSD/CRPS.
  3. Validate the existing models of CRPS and generate new models that recapitulate the unique features of RSD/CRPS. Appropriate experimental systems in which to study RSD/CRPS are required to advance the field; current model systems do not accurately reflect all of the symptoms experienced by patients, such as the potential gender disparity. We have models to study mechanisms operating in CRPS II (which may develop after trauma with nerve lesion); however, as noted by Dr. Gary Bennett, we almost totally lack animal models to study mechanisms operating in RSD/CRPS. Further, there are few simple in vivo or in vitro experimental model systems available to study potential RSD/CRPS disease mechanisms or to predict the efficacy of potential therapeutics.
  4. Define disease mechanisms that give rise to RSD/CRPS in susceptible individuals. Several theories about disease mechanisms were presented at the workshop, but most questions addressing mechanisms clearly remain open. The participants felt that further research efforts focused on determining underlying mechanisms that cause RSD/CRPS are absolutely necessary to make progress in the design of a more appropriate (mechanism-based) diagnostic classification of RSD/CRPS patients and in the design of better therapeutic strategies. In the past, research efforts relevant to RSD/CRPS have generally focused on one component of the syndrome, such as pain, or blood flow, or bone/joint changes, but very little or not at all on central nervous system components related to the sensory, motor and sympathetic systems. Because RSD/CRPS affects multiple body systems, it is important to investigate the interactions between these peripheral and central components.
  5. Integrate research on animal and human models with clinical research on patients. The workshop participants found it essential (and attractive) that research on animal and human models and clinical investigations of RSD/CRPS should be closely aligned. Thus research on mechanisms performed on different models must be interactive with clinical research. Any model, even the human one, is only an approximation to the clinical situation. Research on mechanisms in the models should concentrate on symptoms but not on syndromes.
  6. New RSD/CRPS therapies tested in prospective clinical trials. To date, there are no clinical trials on the efficacy of various treatments of RSD/CRPS available that used evidence-based-medicine criteria (Dr. David Borsook). The participants presented preliminary anecdotal evidence for therapeutic approaches, such as long-term sympathetic and/or spinal cord blockade and physical therapy that could be tested in controlled, prospective clinical trials. Trials designed to treat patients at risk for developing RSD/CRPS (e.g., those undergoing knee-replacement surgery) would help to standardize the patient populations and may contribute to more reliable clinical results. As suggested by Dr. Howard Fields, a collaborative, multi-disciplinary, multi-site translational research program on RSD/CRPS may help to facilitate the development and testing of new therapies for this disorder.

In summary, there was a consensus amongst the participants of the workshop that future research on the mechanisms of RSD/CRPS must be much better integrated with the observation on the human patients, i.e. with the clinic. Design of both animal and human models must be more closely integrated with each other and with the clinic in order to focus the scientific questions, the formulation of hypotheses and the experimental approaches. Only such an interdisciplinary and multidisciplinary approach has a realistic chance of uncovering the pathophysiology and improving treatment of RSD/CRPS. Such an approach should be optimal to use and focus the different methodological techniques that are available to reach these aims. The best way to achieve this overall aim is to create research programs in association with the clinic in which the RSD/CRPS patients are diagnosed and treated.

Top

 

Participants

  • Dr. Ralf Baron (Germany)
  • Dr. Gary Bennett (McGill)
  • Dr. David Borsook (Harvard)
  • Dr. Stephen Bruehl (Vanderbilt)
  • Dr. Cathy Bushnell (McGill)
  • Dr. Howard Fields (UCSF)
  • Dr. Wilfrid Jänig (Germany)
  • Dr. Cheryl Kitt (NINDS)
  • Dr. Jon Levine (UCSF)
  • Dr. Audrey Penn (NINDS)
  • Dr. Linda Watkins (University of Colorado)
  • Dr. Clifford Woolf (Harvard)

Top

 

References

  1. Ali Z, Raja SN, Wesselmann U, Fuchs PN, Meyer RA, Campbell JN, Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain 2000; 88:161-168.
  2. Baron R, Blumberg H, Jänig W. Clinical characteristics of patients with CRPS Type I and Type II in Germany with special emphasis on vasomotor function. In: Reflex Sympathetic Dystrophy - a Reappraisal. Jänig W, Stanton-Hicks M, eds. Progress in Pain Research and Management, Seattle: IASP Press, 1996; pp. 25-48.
  3. Baron R, Jänig, W. Human experimentation. In Harden, R.N., Baron, R. Jänig, W. (eds.) Complex regional pain syndrome. Progress in Pain Research and Management, Vol. 22. IASP Press, Seattle, pp. 239-246 (2001)
  4. Baron R, Levine JD, Fields HL. Causalgia and reflex sympathetic dystrophy: does the sympathetic nervous system contribute to the generation of pain? Muscle Nerve 1999; 22:678-695.
  5. Baron R, Schattschneider J, Binder A, Siebrecht D, Wasner G. Relation between sympathetic vasoconstrictor activity and pain and hyperalgesia in complex regional pain syndrome: a case-control study. The Lancet published online April 23, 2002.
  6. Bhatia KP, Bhatt MH, Marsden, CD. The causalgia-dystonia syndrome. Brain 1993; 116: 843-851.
  7. Blumberg H, Hoffmann U, Mohadjer M, Scheremet R. Clinical phenomenology and mechanisms of reflex sympathetic dystrophy: emphasis on edema. In: Proceedings of the 7th World Congress on Pain. Gebhart GF, Hammond DL, Jensen TS, eds. Seattle: IASP Press, 1994; pp. 455-481.
  8. Blumberg H, Jänig W. Reflex patterns in postganglionic vasoconstrictor neurons following chronic nerve lesions. J Auton Nerv Syst 1985; 14:157 - 180.
  9. Blumberg H, Jänig W. Clinical manifestations of reflex sympathetic dystrophy and sympathetically maintained pain. In: Textbook of Pain, 3rd edition. Wall PD, Melzack R, eds. Edinburgh: Churchill Livingstone, 1994; pp. 685-697.
  10. Bonica JJ. Causalgia and other reflex sympathetic dystrophies. In: The Management of Pain. Bonica JJ ed. Philadelphia: Lea and Febinger 1990; pp. 220-243.
  11. Butler S. Disuse and CRPS. In: Complex regional pain syndrome. Harden RN, Baron R, Jänig W, eds. Progress in Pain Research and Management, vol 22. Seattle: IASP Press, 2001; pp. 141-150
  12. Deuschl G, Blumberg H, LÜcking CH. Tremor in reflex sympathetic dystrophy. Arch Neurol 1991; 48:1247-1252.
  13. Dickensen AH, Wiesenfeld-Hallin Z. Does central sensitization contribute to experimental neuropathic pain? In: Neuropathic Pain: Pathophysiology and Treatment. Hansson PT, Fields HL, Hill RG and Marchettini P, eds. Seattle: IASP Press, 2001
  14. Drummond PD, Finch PM, Smythe GA. Reflex sympathetic dystrophy: the significance of differing plasma catecholamine concentration in affected and unaffected limbs. Brain 1991; 114:2025-2036.
  15. Galer BS, Butler S, Jensen M. Case reports and hypothesis: a neglect-like syndrome may be responsible for the motor disturbance in reflex sympathetic dystrophy (complex regional pain syndrome I). J Pain Sympt Management 1995; 10:385-392.
  16. Galer B, Harden RN. Motor abnormalities in CRPS: a neglected but key component. In: Complex regional pain syndrome. Harden RN, Baron R, Jänig W, eds. Progress in Pain Research and Management, vol 22. Seattle: IASP Press, 2001; pp. 135-140.
  17. Harden RN, Baron R, Jänig W. (eds.) Complex regional pain syndrome. Progress in Pain Research and Management, Vol. 22. Seattle: IASP Press, 2001.
  18. Harden RN, Bruehl S, Galer BS, Saltz S, Bertram M, Bakonja M, Gayles R, Rudin N, Bhugra MH, Stanton-Hicks M. Complex regional pain syndrome: are the IASP diagnostic criteria valid and sufficiently comprehensive? Pain 1999; 83:211-219.
  19. Jänig W. Causalgia and reflex sympathetic dystrophy: in which way is the sympathetic nervous system involved? Trends Neurosci 1985a; 8:471 - 477.
  20. Jänig W. Pain and the sympathetic nervous system: pathophysiological mechanisms. In: Autonomic Failure. Mathias CJ, Bannister R, eds. Oxford: Oxford University Press, 4th edition, 1999; pp. 99-108.
  21. Jänig W, Baron R. The role of the sympathetic nervous system in neuropathic pain: clinical observations and animal models. In: Neuropathic Pain: Pathophysiology and Treatment. Hansson PT, Fields HL, Hill RG, Marchettini P; eds. Seattle: IASP Press, 2001; pp. 125-149.
  22. Jänig, W., Baron, R. The values of animal models in research on CRPS. In Harden, R.N., Baron, R. Jänig, W. (eds.) Complex regional pain syndrome. Progress in Pain Research and Management, Vol. 22. IASP Press, Seattle, pp. 75-85 (2001).
  23. Jänig W, Baron R. Complex regional pain syndrome is a disease of the central nervous system. Clin. Auton. Res. (2002).
  24. Jänig W, Häbler H-J. Organization of the autonomic nervous system: Structure and function. In: Handbook of Clinical Neurology Vol. 74 (30), Chapter 1. Vinken PJ, Bruyn, GW, eds. The Autonomic Nervous System, Part I: Normal Functions. Appenzeller O, ed. Amsterdam: Elsevier Science B.V. 1999; pp. 1-52.
  25. Jänig W, Häbler H-J. Sympathetic nervous system: contribution to chronic pain. In: Nervous system plasticity and chronic pain. SandkÜhler J, Bromm B, Gebhart GF, eds. Progr Brain Res 2000; 129:453-470.
  26. Jänig W, Koltzenburg M. Plasticity of sympathetic reflex organization following cross-union of inappropriate nerves in the adult cat. J Physiol 1991a; 436:309-323.
  27. Jänig W, Koltzenburg M. What is the interaction between the sympathetic terminal and the primary afferent fiber? In: Towards a New Pharmacotherapy of Pain. Basbaum AI, Besson J-M, eds. Chichester: Dahlem Workshop Reports, John Wiley & Sons, 1991b, pp. 331-352.
  28. Jänig W, Levine JD, Michaelis M. Interaction of sympathetic and primary afferent neurons following nerve injury and tissue trauma. In: The Polymodal Receptor - a Gateway to Pathological Pain. T. Kumazawa T, Kruger L, Mizumura K, eds. Progr Brain Res 1996; 112:161-184.
  29. Jänig W, McLachlan EM. The role of modifications in noradrenergic peripheral pathways after nerve lesions in the generation of pain. In: Pharmacological approaches to the treatment of pain: new concepts and critical issues. Fields HL, Liebeskind JC, eds. Progress in Pain Research and Management, Vol 1. Seattle: IASP Press 1994, pp. 101-128.
  30. Jänig W, Stanton-Hicks M, eds. Reflex sympathetic dystrophy - a reappraisal. Seattle: IASP Press, Vol. 6, 1996.
  31. Levine JD, Dardick SJ, Basbaum AI, Scipio E. Reflex neurogenic inflammation. I. Contribution of the peripheral nervous system to spatially remote inflammatory responses that follow injury. J Neurosci 1985; 5:1380-1386.
  32. Livingston WK. Pain Mechanisms. A Physiological Interpretation of Causalgia and its Related States. New York, London: Plenum Press, 1943/1976.
  33. Merskey H, Bogduk N. Classification of chronic pain: description of chronic pain syndromes and definition of terms. Seattle: IASP Press, 1994.
  34. Price DD, Long S, Wilsey B, Rafii A. Analysis of peak magnitude and duration of analgesia produced by local anesthetics injected into sympathetic ganglia of complex regional pain syndrome patients. Clin J Pain 1998; 14:216-226.
  35. Rommel O, Gehling M, Dertwinkel R, Witscher K, Zenz M, Malin JP, Jänig W. Hemisensory impairment in patients with complex regional pain syndrome. Pain 1999; 80:95-111.
  36. Rommel O, Malin J-P, Zenz M, Jänig W. Quantitative sensory testing, neurophysiological and psychological examination in patients with complex regional pain syndrome and hemisensory deficits. Pain 2001a; 93:279-293.
  37. Rommel O, Thimineur M. Clinical evidence of central sensory disturbances in CRPS. In: Complex regional pain syndrome. Harden RN, Baron R, Jänig W, eds. Progress in pain research and management, vol 22. Seattle: IASP Press, 2001b; pp. 193-208.
  38. Schattschneider J, Deuschl G, Baron R. Kinematic analysis of the upper extremity in CRPS. In: Complex regional pain syndrome. Harden RN, Baron R, Jänig W, eds. Progress in Pain Research and Management, vol 22. Seattle: IASP Press, 2001; pp. 119-128.
  39. Schwartzman RJ, Kerrigan J. The movement disorder of reflex sympathetic dystrophy. Neurol 1990; 40:57-61.
  40. Stanton-Hicks M, Jänig W, Hassenbusch S, Haddox JD, Boas R, Wilson P. Reflex sympathetic dystrophy: changing concepts and taxonomy. Pain 1995; 63:127-133.
  41. TorebjÖrk E, Wahren LK, Wallin BG, Hallin R, Koltzenburg M. Noradrenaline-evoked pain in neuralgia. Pain 1995; 63:11-20.
  42. Wahren LK, Gordh T Jr, TorebjÖrk E. Effects of regional intravenous guanethidine in patients with neuralgia in the hand; a follow-up study over a decade. Pain 1995; 62:379-385.
  43. Wasner G, Heckmann K, Maier C, Baron R. Vascular abnormalities in acute reflex sympathetic dystrophy (CRPS I): complete inhibition of sympathetic nerve activity with recovery. Arch Neurol 1999; 56:613-620.
  44. Wasner G, Schattschneider J, Heckmann K, Maier C, Baron R. Vascular abnormalities in reflex sympathetic dystrophy (CRPS I): mechanisms and diagnostic value. Brain 2001a; 124:587-599.
  45. Wasner G, Drummond P, Birklein F, Baron R. The role of the sympathetic nervous system in autonomic disturbances and "sympathetically maintained pain" in CRPS. In: Complex regional pain syndrome. Harden RN, Baron R, Jänig W, eds. Progress in Pain Research and Management, vol 22. Seattle: IASP Press, 2001b; pp. 89-118.
  46. Wenzelburger R, Schattschneider J, Wasner G, Raethjen J, Stolze H, Deuschl G, Baron R. Grip Force coordination in CRPS. In: Complex regional pain syndrome. Harden RN, Baron R, Jänig W, eds. Progress in Pain Research and Management, vol 22. Seattle: IASP Press, 2001; pp. 129-134.
  47. Woolf CJ, Bennett GJ, Doherty M, Dubner R, Kidd B, Koltzenburg M, Lipton R, Loeser JD, Payne R, TorebjÖrk E. Towards a mechanism-based classification of pain? Pain 1998; 77:227-229.

Published meeting report from December 2002 issue of Anesthesia & Analgesia (subscription required): (http://www.anesthesia-analgesia.org/cgi/content/full/95/6/1812)

Top

Last updated April 12, 2011