TwitterRSSFacebookDirectors Blog
  Disorders A - Z:   A    B   C    D    E    F    G    H    I    J    K    L    M    N    O    P    Q    R    S    T    U    V    W    X    Y    Z

Skip secondary menu

Friedreich's Ataxia Press Releases


Small Changes in Protein Chemistry Play Large Role in Huntington’s Disease
Thursday, Dec 24, 2009
In Huntington’s disease, a mutated protein in the body becomes toxic to brain cells. Recent studies have demonstrated that a small region adjacent to the mutated segment plays a major role in the toxicity. Two new studies supported by the National Institutes of Health show that very slight changes to this region can eliminate signs of Huntington’s disease in mice.

Study Suggests Idebenone May Improve Neurological Function in Friedreich's Ataxia
Wednesday, Dec 5, 2007
Results of a placebo-controlled, double-blind phase II study of the antioxidant idebenone in children with Friedreich's ataxia (FA) suggest that the treatment may lead to improvements in neurological function. It is the first placebo-controlled study to suggest that the neurological deterioration associated with this disease can be slowed or reversed.

Study May Reveal Clues To Friedreich's Ataxia
Friday, Jun 13, 1997
For years neurologists witnessed the slow decline of their Friedreich's ataxia patients, helpless to prevent damage to the spinal cord, heart and pancreas. The cause of the damage always eluded researchers until now. A new study in the June 13, 1997, issue of Science may offer an explanation for this neurodegenerative disease and eventually lead to the development of treatments.

Scientists Identify Gene for Spinocerebellar Ataxia 2
Thursday, Oct 31, 1996
Scientists have identified the gene altered in one of the most common hereditary ataxias, spinocerebellar ataxia 2 (SCA2). The discovery allows improved genetic testing and provides new clues about how genetic mutations cause several neurological disorders, including Huntington's disease. The findings are reported by three different groups in the November issue of Nature Genetics.

New Type of Trinucleotide Mutation Found in Friedreich's Ataxia
Thursday, Mar 7, 1996
Scientists have identified a new type of trinucleotide repeat mutation that leads to Friedreich's ataxia (FA), a rare childhood neurodegenerative disease. The discovery allows accurate screening for carriers of the disease and may lead to the first effective treatments.